
N94- 33828

A Parallel Data Management System

for Large-Scale NASA Datasets

J aideep Srivastava

Computer Science Department

-lg EECS Building, _00 Union St. S.E.

University o/ Minnesota

Minneapolis, MN 55_55

srivasta@cs.umn.edu; (612)6_5-_0I_

Abstract

The put decade hu experienced a phenomenal growth in the amount of data and resultant infor-
mation generated by NASA's operationl and research projects. A key application is the reproceuing
problem which hu been identified to requite data management capabilities beyond those available
today [PRAT93]. The Intelligent Information Fusion (IIF) system [ROEL91] is an ongoing NASA
project which has similar requirements. Deriving our understanding of NASA's future data manage-
ment needs based on the above, thia paper describes an approach to using parallel computer systems
(processor and I/O architecture) to develop an etticient parallel database management system to
axidre_ these needs. Specifically, we propose to investigate issues in low-level record organization and
management, complex query processing, and query compilation and scheduling.

1. Problem Understanding: NASA's Future Data Management Needs
The past decade has experienced a phenomenal growth in the amount of raw data and resultant

information generated by NASA's operations and research projects [l_OEL91]. The need for significant

improvement in information technologies to manage, identify, and access this data has been clearly identi-

fied [ROEL91, CROM92, CAMP90a, CAMP90b]. This section present's our view of NASA's future data

management needs (at least in part). It is based on (i) the description of the reprocessing problem given in

[PRAT93], (ii) published descriptions of the Intelligent Information Fusion (IIF) system [ROEL91], and

(iii) miscellaneous NASA publications.

1.1 A View of NASA's Data Management Architecture

Figure I shows the schematic of a system architecture where the principal emphasis is on the path

data takes, and the transformations it goes through, from sensor collection to the scientific user. This

architecture borrows from that of the IIF system [ROEL91]. The aim of this diagram is principally for
problem understanding purposes and to establish a context for the subsequent discussion. It is by no

means a proposal of what the complete architecture for NASA's data management system should be, and

is much wider in scope than that of the present paper.

Sensor data first goes through some very low-level processing to generate 'raw data' [PRAT93] which

is stored in a Parallel Raw Data Archive (PRDA). The reproceseing activity creates 'data products'
[PRAT93] which are managed by a Parallel Relational Database Management System (PRDBMS). Meta-

data about both raw data and data products is stored in a Metadata Database (MDB). The three different

types of data stores, i.e. the PRDA, PRDB, and MDB, reflect the three basically different types of usage

of the data and metadata in such an environment [PRAT93]. The raw data is expected to be used mostly

by reprocessing algorithms running on vector supercomputers and massively parallel processors (MPPs),

and hence is shown managed by a high-performance file system. Since existing data products can also

be inputs to the reprocessing activity [PRAT93], direct access to the Parallel Record Management Layer

(PRML) of the PRDBMS by the machines running the reprocessing algorithms is shown. A typical

user of the data products is a remote scimtist who logs in and browses the metadata searching for data
relevant to a research project. While most browsing involves interaction with the metadata, the scientist

may periodically access data products as well as raw data to identify interesting data. Upon selecting

469

I

Figure 1. Our View of NASA Data Management Architecture

470

theneeded data, the appropriate portion is downloaded into the scientists home location. To support

such pattern of user behaviour the MDBMS should support large numbers of interactive browsing ses-

sions, each posing mostly small queries against the MDB, interspersed with occasional queries against the

PRDA or PRDB. While interactive response time is needed, the bandwidth required is expected to be

small during the browsing. Once browsing is complete, the user will issue a series of requests to extract
the data to be downloaded to his home location. These requests can be SQL queries to the PRDBMS

or file access requests to the PRDA. These requests are expected to have high bandwidth requirements

since a large volume of data may be extracted. Since execution times of different plans for a SQL query

can differ by a few orders of magnitude, query optimization is critical to ensure both interactive response
time and reduced system workload.

1.2 Parallel I/O: Key to NASA_s Data Management

Given the volume of data/information in NASA's applications, the use of multiple disks for storage is

well accepted. In a database processing environment, the fact that disk I/O is the main bottleneck has

been a consensus among researchers. Recent years have seen phenomenal increase in processor speeds,

while the 'disk access time' has not shown much improvement, exacerbating the 'access gap' problem. The

advent of multiple processor machines has added to this problem. Fortunately, the computer architecture

community has started addressing the needs of data intensive applications by developing parallel I/O

architectures, e.g. Redundant Array of Inexpensive Disks (RAID) [PATT88] and Disk Arrays [GORD91].

This promises future parallel I/O systems which can feed data to the multiprocessor at a high sustained
bandwidth.

Along with the development of parallel I/O hardware, there is a need to develop efficient parallel I/O

algorithms to exploit their full potential. The main focus of research in parallel algorithms has been on

main memory resident data, where processor parallelism has been of primary concern [LEWI92]. With

I/O bandwidth being a principal concern, high performance parallel databases require parallel algorithms

for disk resident data. Parallel processing of database operations was first addressed by the database

machine community, where the focus was on designing special-purpoee hardware [SU86]. No single

architecture was found suitable for all database applications, and the cost of building special purpose

hardware for specific applications led to only limited success in this direction [DeWI92]. In the past few

years there has been renewed interest in looking at database issues for general purpose parallel machines.
The availability of a variety of commercial parallel machines, which has eliminated the expense of building

special purpose hardware, is in large measure responsible for this [DeWI92].
A crucial factor in our choice of the relational model for the PRDBMS component of the architecture

in Figure i is that the set-oriented, non-procedural nature of the relational model provides opportunities

for massive parallelization [DeWIT92]. This choice is further supported by the fact that the IIF system
has already proposed using a relational DBMS for its low-level record management system (LLRMS)

[ROELgl].

1.3 Scope of Our Project

Realization of the architecture shown in Figure I is a major task and requires research and development

in many areas. The scope of our project is limited to addressing problems in the PRDBMS component

of the system. Specifically, we address the following problems:

Data organization, loading, sorting, and retrieval, and index creation and maintenance, in the

Parallel Record Management Layer. The proposed solutions must consider that access requests

to this layer will be a mix of (i) very high rate of large size access requests from the reprocessing

algorithms, and (ii) low to medium to sometimes large size requests from the upper layers of
PRDBMS.

• Parallel algorithms to support expensive operations, e.g. join, union, etc., in the Parallel Relational
Algebra Layer.

471

• Compilationandoptimizationof SQLqueries,and resource allocation and scheduling of operators
in the resultant plan. Minimizing response time and maximizing throughput will be considered as

the optimization criteria.

The rest of the paper is organized as follows: Section 2 presents the technical details of our approach.

Section 3 presents a list of goals that must be met, including specific technical problems that must be

solved, to make such a system a reality. Section 4 provides the conclusions and section 5 containa the list
of references.

2. Technical Details of the Proposed Approach

Our overall goal is to investigate techniques for building a parallel database engine which could fulfill

the needs of the PRDBMS component of Figure 1. Following are the key ideas behind our approach:

• Tuples in a relation (or records in a file) are modeled as points in a multi-dimensional space, with

each attribute representing an axis.

• This multi-dimensional space can be divided into (overlapping or non-overlapping, nested or non-

nested) subdivisions.

• The subdivisions are allocated to different I/O units (e.g. disi_) of a parallel computer, with usually

many subdivisions going to a single unit, and possibly a single subdivision replicated on multiple

units for reliability. This has been termed declasterin9 [DEWI90]. The aim is to provide good (close

to optimal) load-balancing for query processing.

• New declustering-aware parallel algorithms for basic data retrieval operations, e.g. relation/file

scan, as well as complex operations, e.g. join and sort, are built to take advantage of the underlying

declustering.

• The query compiler/parallelizer/scheduler takes considers architectural parameters and decluster-

ing information, in addition to the traditional query and database parameters, in minimizing the
execution plan cost. In addition, it generates an initial resource allocation schedule for plan execu-
tion.

The remainder of this section is organized as follows: Section 2.1 presents an architecture for the

PRDBMS. Sections 2.2 through 2.4 describe our approach to solving specific problems in the record

management, relational algebra, and query compilation layers of the PRDBMS.

2.1 Parallel RDBMS Architecture

As shown in Figure 1, the PRDBMS has a layered architecture. The parallel record management layer

provides the abstraction of relations/tables which can be created, deleted, populated, sorted, and on

which simple selections (predicates involving single relations only) can be performed. This abstraction is

used both by the higher layers of the PRDBMS and by the reprocessing algorithms. The parallel relational

algebra layer contains algorithms for complex operations such as join, union, difference, aggregation, etc.
It uses the abstractions provided by the record management layer. The query compilation layer provides a

declarative interface (SQL) to PRDBMS users (the intelligent front-end and metadata manager in Figure

1), and does the necessary translation and optimization of declarative queries into a sequence of relational
algebra operations.

2.2 Parallel Record Management Layer

The parallel record management layer uses the services offered by the operating system to provide an

abstraction of relations/tables containing records.

2.2.1 Requirements

472

We firstidentifythe characteristicsof data storedin the record management system as wellas ofthe

retrievalrequests on it.Datasets for many large-scalescientificapplications,includingthose of NASA,

exhibitthe followingcharacteristics[ROEL91, CAMP90a]:

The basicdata unit isan observation,e.g.from a satellite,with variousattributessuch as latitude,

longitude,temperature, time,etc.

The data is multi-dimensional, e.g. the three spatial dimensions, the temporal dimension, and
various other attributes.

• The database is fairly stationary, i.e. new data can be appended or results of analyses can be added.

However, the basic data once added is rarely, if ever, updated.

• High speed and volume of reprocessing requires support for efficient creation and population of
relations, both in terms of bandwidth and response time.

• A very high rate of large size retrieval requests is expected from reprocessing algorithms. Large size

requests are also expected from the intelligent front-end working on the users' behalf, albeit not at
quite the same rate as reprocessing algorithms (though it really depends on user load).

2.2.2 Approach

In the following we describe our approach to the specific problems listed below. Comparisons with
related work are included where appropriate.

• Data declustering, i.e. partitioning a file of records across multiple disks of a parallel I/0 system.

• Parallel algorithms for range query processing on a single relation/table.

• Parallel algorithms for loading large data files into relations/tables.

Unit datum is modeled as a tuple/record whose attributes/fields represent various facets of the datum

such as latitude, longitude, temperature, time, etc. Relations/Files, i,e. a collection of records of the

same type, model sets of observations of the same type. A general request on a collection of observations

of the same type is modeled as a multi-attribute range query, with predicates defined on one or more
attributes.

Let Di (1 < i < d) be an ordered set. A record is an ordered d-tuple (rl, r2, ..., rd) E D1 x D2 x ... x Dd.
Di is defined to be the domain of the i th attribute, and ri is the value of the i *h attribute of the record.

A d-dimensional file, F, is a non-empty set of records, stored on a parallel disk system with M disks.

The most general retrieval operation, the range query, is denoted by Q = (ILl, UI), ..., [L_, U_)), with
[L, U_) being the desired range on the i fh attribute. The answer to the range query Q is A(Q) = ((rl, ..., rd)

F I L_ _< ri < Ui, 1 < i < d}. Note that the exact-match query and the partial-match query can be

treated as special cases of the range query. For a query Q, let Worki(Q) be the number of blocks required

from disk i to answer the query, 1 _< i <_ M, and let Work(Q) = _l<i<M Worki(Q) be its total work.
Assuming parallel operation of individual disk units, and the performan-cd'of the I/O subsystem being the

critical factor in system performance - which is a reasonable assumption given trends in paraUel machines,

the response time of the query is Rap(Q) = MAXI<i<M {Worki(Q)). The optimal (minimal) response
time for the query Q by distributing data over M disks is then [Work(Q)/M].

Now, the data declnstering problem for a parallel record management system is to develop a strategy

such that it provides (i) optimal parallelization of individual queries (speed.up) as well as (ii) good
parallelization of all possible queries (robustness). In the last few years a number of declustering strategies

have been proposed [DeWI90, GHAN91, GHAN92, HUA91 LI92, FALO93, ABDE93]. A survey of a

some of these is given in [DeWI92]. The focus of [DeWIg0, GHAN91] is to decluster based on a single
attribute, thus improving performance only of queries containing a predicate on that attribute. [GHAN92]

473

improves upon their previous proposal by selecting a fypica[query and using information about it to

improve declustering. [HUA91] considers multiple attributes hut optimality is not addressed. [ABDE93,

FALO93] identify specific subsets of queries for which their schemes have optimal performance, but the
issue of robustness is not addressed. Our work [L192] has developed the Co.ordina_e Modulo Decimflering

(CMD) techniques (i) which is optimal for a very large percentage of all possible single rels_ion SQL

queries, (ii) has a small deviat/on from optimality for the rest, sad (ill) whose deviation from optimality
decreases as the size of the query result grows. Complete details of CMD and its comparison with other

schemes is given in [LI92]. Here we provide a brief overview.
For illustration assume that all files fire subsets of the unit space S = [0, I) _, d >__I. Divide each

dimension of S into nM equal sized intervals for some integer n:

[0, llnM), [11nM, 21nM), ...,[(nM- l)InM, 1).

Let the ,_hintervalof the kth dimension be denoted by I_ - like,hi+) - [i/nM, (i+ 1)/riM),for0 <

i < nM - I, with its interval coordinate, ic_, being i. Given a region Ill,t, hut) x [i_+s, h:u,) x ... x

[/_7,, hdl,) of S, its region coordinaie, re, is defined to as an ordered set of its interval coordinates, i.e.
re - (let, ic_, ..., led). Now, a region, i.e. partition of the multi-dimensional data space, with region

coordinate re is assigned to disk CMD(re, M), where the allocation function CMD is defined as:

CMD(re, M) = (ict + it2 + ... + ic_l) rood M.

Example 1: Let S = [0, 1) 2, M = 4 and n = 2, i.e. each

length 0.125 each. The partitions of S and their allocation to

1

T

tl 0.111

0.111

0.8,

3 ,
0.31'I, 2

2

00.12._. Oi

0

3 0

2 3

0 t

3

t

I 2

0 11

0.12,5 0.2_ 0.375 0.$
0 1 2 3

dimension is divided into 8 intervffib with

disk units is shown in Fig. 2.

3 0 t 2

2 3 0 It

"i" i 2 a o
I

+ ++_ +

2: 3 0

O- [;

0.62$ 0._._ t).ll_$
4 $ 5 7

Figure 2. The partition and allocation of S = [O, I) x [O, I) among 4 disks with M = 4 and n - 2

We have developed parallel algorithms for multi-dimensional range queries on data with CMD par-

titioning. The following theorems describe the key properties of the algorithms. Proofs are given in

[L192].
Theorem I (Speed,_):The CMD method isoptimal for allrange querieswhose length,interms of

the number of regionscovered,on some dimension isequal to kM' where k isan integer.

Corollary 2.1. The CMD method isoptimal for allrange queriesin which at leastone attribute

isunspecified(sincethe query length on that attributeisthe complete range, automaticallyan integral

multipleofM).

Example 2: Consider ouery Qt - ([0.000,0.375),[0.250,0.750))in Figure 2. A_.ming each

regioncan he fetched in a singledisk access,Work(_) = 12 disk accesses.Since e×actly3 accesses

need to be made to each of the disks 0,I,2,3, the response time for Q: isoptimal. The condition

474

in Theorem 1 is sufficient but not necessary since optimal response time is also achieved for query

Q2 = ([0.625,1.000),[0.250,0.500)).

Theorem 2 (Roblstness):For any arbitraryrange query Q the response time, R,sp(Q), isbounded

by fWort_(Q)/M] + (M- I) _-l - i.

Theorem 2 gives an approximate upper bound, and the actual performance of CMD is much better.
For example, for 2 and 3 dimensions the worst case upper bounds are M/4 and M2/16, respectively.

Note that range queries usually examine a very large subspace of S, i.e. Work(Q) is usually large. Thus

rWork(Q)/M_, the fraction that is optimal, is much more significant than (M - 1) _-l - 1.
Parallel Data Loading Algorithms: Our recent work [LI93] is developing efficient parallel algo-

rithms for loading files of records into a CMD format. Initial results show that almost linear speedup of

the process, in terms of the number of disk units, is achievable. Detailed algorithms and their properties

are discussed in [LI93].

2.3 Parallel Relational Algebra Layer

The parallel relational algebra layer contains algorithms for complex operations such as join, union,

difference, and aggregation. It uses the abstractions provided by the parallel record management layer.

2.3.1 Requirements

Descriptions of various NASA projects, including the Intelligent Information Fusion (IIF) system

[ROELgl, CAMP90a], the Intelligent User Inter�ace/or Catalog Brot#sing system [CROM89], etc., have
identified the need for performing complex comparisons across different types of data sets. Thus, the

requirements for this layer are:

• Efficient algorithms for complex operations such as join, union, set difference, etc.

• Efficient algorithms for various kinds of aggregate operations.

• Since space and time are special types of attributes, correlations on them can be potentially treated

in a more specialized and efficient manner, e.g. by supporting temporal joins [McKE92].

2.3.3 Approach

In the previous section we presented results about the efficacy of the CMD approach in processing

queries accessing a single relation. A vast body of work [DeWI92, WOLFgl, FRIEg0, SCHN89, DeWI92,

CHEN92, NICC92] has shown that join continues to be one of the most expensive relational operations in

the parallel environment. Our recent work [NICC92] has shown that an approach to achieving efficiency

for complex database operations in a parallel environment is to make them declustermg awlre, i.e. an

algorithm implementing a complex operation (e.g. join) will perform better if it is aware of the underlying

declustering strategy. [NICC92] describes and analyzes in detail the benefits of making hybrid-hash join
algorithm [DeWI84] aware of CMD declustering. We outline the approach here.

For a relation stored using CMD declustering, we define the following:

Definition (Join Az_, b): The axis of the multi-dimensional space representing the join attribute
'b'.

Each interval (li, h_) along the join axis denotes a subrange of the join attribute domain.
Definition (Joining Region, JR(R,B,i)): The d- I dimensional subspace, of the d dimensional space,

created by fixing the subrange of the join axis, b, to have values in the interval (I_, hi) and allowing the
other axes to be free.

JRRo, is the ifh joining region of relation R along attribute axis a.

475

As shown in Figure 3(a), consider R and S as relations to be joined on attribute b. JR(R,b,2) and

JR(S, b, 1) are example joining regions of relations R and S, respectively. A joining region of R must join

with every joining region of S with which it overlaps on the join axis. Thus, JR(R, b, i) and JR(S, b, j)

must be joined iff.

(z_< t#<_h_)or(l_< hi <_h_)

The followingresultsdescribethe propertiesofour declusteringaware approach, detailsof which are

presented in [NICC92]:

Theorem 3: Ifthere isenough aggregate buffermemory, i.e.among allprocessorstogether,to hold

the largestjoiningregionof the smallerrelation,plus one disk block per processor,then no data need be

read from the I/O system more than once.

Corollary: There existcases where declusteringaware algorithm willread a disk block exactlyonce

while a non declusteringaware algorithm willread itmore than once.

In addition to reducing disk accesses,a declusteringaware algorithm may entirelyeliminatepart of

the computation, by skipping over entirejoining regions of eitherrelation,ifthere isno intersecting

joiningregion ofthe other relation,as shown in Figure 3(b). Essentially,a declustering-awareapproach

to query processinghas the followingadvantages:

• A largeproblem is broken down into a set of subproblems, such that the sum of the work for

the set of subproblernsisusuallylesserthan that for the original.For example, the work foran

equi-join between relations R and S, with sizes IRJ and ISI respectively, is roughly proportional to

IRIIS I, say with a nested-loops join. If, however, the join axis has k partitions, a declustering-aware
nested-loops algorithm is required to do only k(IRHSI)//c _ total work for the k subproblems.

• The performance of most database algorithms, e.g. join, sort, etc., is highly sensitive to the amount

of main memory buffer available, with performance often increasing dramatically as the ratio

BufferSize/ProblemSize increases [CHOU86, YU93]. For a given amount of aggregate main

memory buffer (of the parallel machine), breaking a problem into smaller subproblerns has the net
effect of increasing this ratio.

• Skewed data distribution causes serious performance problems for most database algorithms [DeWI92a

DeWI92b], mainly due to improper load balancing. Declnstering aware algorithms provide one way

to handle this [NICC92].

2.4 Parallel Query Compilation and Scheduling Layer

Database query compilation for sequential machines provides the functionality of translating a high-

level (declarative) query into an optimized sequence of relational algebra and record management level

operations. For a parallel machine, the additional decisions of (i) determining the type and degree of

paralhlization, (ii) an estimation of resource requirements, and (iii) an initial assignment of resources,

must be made [GANG92, SRIV93].

2.4.1 Requirements
Descriptions of various NASA projects, including the Intelligent Information Fusion (HF) system

[ROEL91, CAMP90a], the Intelligent User Interface for Catalog Browsing system [CROM89], etc., have

identified that the interface between the applications, e.g. intelligent front-end of Figure 1, and the

database of data products be a high-level one, e.g. SQL. Query compilation and scheduling for par-

allel databases is currently an active research area [DeWI92a, WILS91, GANG92, SCHN90, HUA93,

SRIV93, NICC93]. While detailed survey and comparisons are provided in [SRIV93, NICC93], the basic

requirements for this layer are:

• Translation from SQL to an internal form (not • research issue).

• Optimizations performed on the internal form based on the desired objective, e.g. minimize work,

minimize response time, etc., to generate a 'good' query execution plan.

476

• Determiningthetype(s)anddegreeof paraUelization of the query plan.

• Estimation of resource needs for a query plan to help resource managers during query execution.

• Determining an initial resource allocation for the plan, which may potentially be modified during
execution.

2,4.2 Approach

Our overall approach to query compilation is shown in Figure 4. It is a 2-phase approach, where in

Phase I a compiler that optimizes SQL for sequential machines is used, which (heuristically) minimizes

work. This is not a research issue since good sequential optimizers ezist. The output is fed to Phase 2

which (i) parallelizes the sequential plan, (ii) estimates its resource needs, and (iii) generates an initial

resource allocation schedule. The output of Phase 2 is a set of tasks schedulable on a parallel machine.

An example input query, represented as a query graph, and its corresponding set of tasks, tl through

ell, is shown in Figure 5. In each of the seven time slices, numbered 0 through 6, the total resources

allocated for this query's execution are shared between the tasks allocated to the slice. Further details

are in [NICC93]. While in general it is not true that the psrallelization of a 'good' (or even the optimal)

sequential plan will yield the best parallel plan, a 2-phase approach such as ours has the advantages of

(i) drastically reducing the search space size, and (ii) leveraging off the existing technology in sequential

optimization. We share the belief with [STON88, HONG91, HONG92] that a 2-phase approach is a

viable heuristic and worth a detailed investigation.

Figure4

i'hue 2

P_Ueli_r

R_

EstlmJlor

and ALlocator

Set M Ta_,l

We now briefly describe the key elements of our approach to query compilation and scheduling.

Details are provided mainly in [NICC93] and some in [SRIV93]. Specifically, we propose (i) a parallel

query plan representation, (ii) a new cost model to incorporate parallel execution, and (iii) heuristic

search algorithms.

Query Plan Representation: A parallel query plan can exploit the following kinds of parallelism:

• [hera-operator parallelism: A relational operator, such as select, project or join. can be performed
by multiple processors simultaneously.

• Inter-operator parallelism: Different relational operators of a query, eg. different joins, can be
performed in parallel by different (sets of) processors.

• Pipelining: Different relational operators can be performed in a pipelined manner using separate

(groups of) processors. The result of one is pipelined to the other.

477

,¢tnlx_ •

i

0

_ Rq_ JP.(R.b.Z) _Rj, i)

I(R,I.I)

$ Iolnm| Reign JRlS.b.l)
2 d,,2

6: t1(100)

5: t2;t3(100)
4: t4;tS;t6(!O0)
3: t7(200)

2:tg;t8(170)

1: tlO(lOO)
o: t11115o)

]PilFlze 5

478

In our model a parallel query plan is represented as a cspacitated labeled ordered binGr7 tree. The

shape represents inter-operator parallelism, the orientation represents operand ordering, the node labeling

represents intra-operator parallelism, the M (P) branch labeling represents materialization (pipelining)
of results between operators, and the branch capacity represents the size of the ms/n-memory (producer-

consumer) buffer when materialisation (pipelining) of intermediate results is being done.

4

_e

Figure 6 shows a plan for a query with four joins, i.e. J'l, J_, J3 and J4, between five _lstio_,
i.e. R_, R2, /_, P_ and R6. J_ hu inter.-ope_mr p_alMim ruth J2 (and Mth Js). Ol_,io,,- J_
and J4 are on a root-leaf path and thus do not have inter-operator parallelism. The same hol_ between
Jr, Ja and ,/4. Since the branch between J1 and J4 is labeled with M, Jl must complete before ,14 can

begin. The same holds for ,/2 and Ja. The branch between Js and ,/4 is labeled P, and thus the two are

pipelined, with J4 beginning as soon as Ja has produced the first result tuple. The labek 4, 4, 6 and 6

on J1, J4, Jr and J3, respectively, represent the number of processors assigned to each. Note that the

processors assigned to operators at the opposite ends of a branch labeled M are the same set, i.e. they

first perform the child task and then proceed to the parent task. The processors on the opposite ends of

a branch labeled P are distinct sets since the operations are pipelined. The 4 processors will first perform

the join Jl and then J4. The 6 proceseors will first perform the join Jr and then J3. The two processor

sets will be working independently while performing the joins J1 and Jr. While performing Js and J4,

the 6 processor set will be the producer while the 4 processor set will he the consumer. The capacity of

2 on the branch (./4, Ja) means that the intermediate buffer is assigned 2 units of memory. A capacity of
4 on the other branches indicates that each materialized intermediate result has been assigned 4 units of

buffer space. Upon overflow the results must go to disk. Total system memory is I0 units.

Cost Model for Parallel Query Plans: A cost model for parallel query plans requires (i) developing

analytical co_t expressions for individual operators such as select, project, join, etc., and (ii) combining

the expressions for individual operators to obtain costs for entire plans. Special care has to be paid in

combining costs for operators executing in a parallel or pipelined manner. The two key components are:

• Cost of Individual Operators: A number of simulation and experimental evaluations of parallel

algorithms for relational operators exist [DeWIg0, BARU88, SCHN89, FRIE90]. For query opti-
mization, however, an analytical parameterized cost model is needed. In addition to conventional

parameters such ss database size, query selectivity, indexes, algorithm used, etc., the cost of an

c_perator depends on (i) its degree of paraHelization, (ii) its resource allocation, (iii) parameters of
the machine architecture, e.g. costs for unit processing, I/O, and communication operations, and

(iv) data declustering.

479

r

i Query Generator :----_
!

Query Optimizer

I Join Graph to Join Tree

i
I

_- i-- DatabaseParametem I
i Architecture Parameters

I op§mizatJon Criteda

Tree-Decomposer I _.j_L--- _l,

Operator Tree to Forest of

Schedulable_Components 1____1 ! !Resource AllocaUon to
Schedulable Components

P

t
/ /

Intermediate Cost

Analysis using
Heuristics

i
!

I

Cost Model

I

I

._ Simulator
I

J

I

I

,.... _ Performance .,
/ /

PIL_ure 7. Arcldtecture of am Optimizer

480

• Combining Operator Costs: For parallel query processing the plan with total minimum work and the

one with the shortest critical path may not be identical [GUST89]. Maximizing overall throughput

in a multiprogrammed environment requires minimizing a query's total work, while minimizing

individual response time requires reducing the critical path. Calculating the critical path in a plan

can be quite tricky as it needs to consider data flow dependencies and resource allocation [GANG92,
SRIV93, NICC93].

In [SRIV93, NICC93] we describe the details of a cost model that addresses the above issues. It

provides means of labeling nodes of the query plan tree with various cost metrics such as work, response
time, etc., and lends itself to emcient bottom-up evaluation.

Search Algorithm: It has been argued by [SWAM88,SWAM89,IOANg0] that exhaustive enumera-

tion techniques such as dynamic programming [SELI79] are not likely to be successful for queries with

large number of joins, i.e. 100 or so, and have proposed heuristic combinatorial optimization techniques

such as Simulated Annealing, Iterative Improvement, and Successive Augmentation. The size of the

search space for parallel query plans will be much larger than that for sequential ones [SRIV93]. This

makes the need for efficient search algorithms of paramount importance. In [SRIV93] and [NICC93]
we present two search heuristics to reduce the search space. The key elements of our approach are the
following:

• The join-tree output from the sequential optimizer is converted into an operator tree.

• Decisions is made about which branches, i.e. intermediate results, will be pipelines and which will
be materialized.

• Resource estimation for various tasks is done.

• Resource allocation for variotm tasks is carried out.

• At each step some heuristic choices are made to reduce the search space size.

We have built a prototype query optimizer and performed its initial evaluation [SRIV93, NICC93].

Figure 7 shows a schematic of our prototype optimizer. It is a customizable optimizer in the sense that
it is table-driven and takes architectural parameters from a file as an input to its cost model. Thus, _t is
customizable to various architectures.

3. Goals_Specific Research Issues

481

3.1 Research Issues in the Record Management Layer

For the record management layer, the following specific research problems must be addressed:

• Evaluate the CMD approach with NASA data sets.

• Based on above evaluation tune/modify CMD, and if need be create new declustering strategies for
NASA's data sets.

• Enhance our approach to provide better declustering by including information about a core set of

NASA application queries. Many applications often have such a set, and we would like to identify

such a set for the reprocessing algorithms.

• Since the relations are partially sorted on each dimension, its benefit on parallel external sorting

algorithms needs to be examined.

• CMD provides an implicit indexing because of partial ordering of various domains. How this affects

and is complemented by explicit indices, e.g. tree or hash based, needs exploration.

• Development of specialized indices for the parallel I/O system to speed-up the evaluation of aggre-

gates [SRIV89], temporal selections [KOLO89], etc.

• Develop emcient parallel algorithms for loading large data files into relations in the PRDBMS, since

this expected to be a frequent operation [PRAT93].

• Develop algorithms to perform operations along the temporal and spatial dimensions efficiently.

3.2 Research Issues in the Parallel Relational Algebra Layer

In this layer the following research issues must be addressed:

• Evaluate our declustering aware join algorithm on NASA's data sets.

• Based on above evaluation tune/modify the join algorithm, and if need be create new ones, for
NASA's data sets.

• Apply the declustering aware approach to other algorithms in the relational algebra layer, e.g.

union, difference, aggregation, etc.

3.3 Research Issues in the Query Compilation Scheduling Layer

Query compilation and scheduling is a wide open area of research today, and a number of issues

remain open. Given the fact that it took almost a decade to get satisfactory sequential database query

compilers, this is likely to be an area of active research for a few years. Specifically, the following research
issues must be addressed:

• Evaluate the effectiveness of our optimizer on some typical queries found in NASA applications.

• Customize our prototype optimizer for a parallel architecture that NASA may be considering for

building/acquiring a parallel DBMS on.

• Evaluate and validate the optimizer cost model, which is one of the keys to building a successful

optimizer [DeWI92a]

482

4. Conclusions

In the past decade there has been a tremendous growth in the amount of data and resultant information

generated by NASA's operations and research projects. This growth is expected to continue in the future.

Use of parallel computers, both processing and input-output, will be a key to solving the resultant data

management problem. In this paper we have described the architecture of a parallel data management

system which is based on visualizing data as points in space and query processing as geometric operations.

The architecture is highly parallel and is quite generic, i.e. can be realized on a wide variety of parallel
machines. We provided an overview of our results and pointed out a number of open research issues.

5. References

[BARU88] C. K. Baru, O. Frieder, D. Kanflur, and M. Segal, "Join on a cube: Analysis, Simulation

and Implementation", in Database Machines and Knowledge Base Machines, M. Kitsuregawa and H.
Tanaka, Eds. Boeton: Kluwer, 1988, pp 61-74.

[BORA83] H. Boral, and D. DeWitt, "Database Machines: An Idea Whose Time has Passed? A Cri-

tique of the Future of Database Machines", in Proceedings of the 1983 Workshop on Database Machines,

Springer-Verlag, 1983.

[CAMPg0a] William J. Campbell, and Robert F. Cromp, "Intelligent Information Fusion for Spatial

Data Management", in Proceedings of the _th International Symposium on Spatial Data Handling, 1990,
Zurich, Switzerland.

[CAMP90b] William J. Campbell, and Robert F. Cromp, "Evolution of an Intelligent Information

Fusion System", in Photogrammetric Engineering and Remote Sensing, Vol. 56, No. 6, June 1990, pp.
867-870.

[CHEN 92] M. S. Chen, M. L. Lo, P. S. Yu, and H. C. Young, "Using Segmented Right-Deep Tress

for the Execution of Pipelined Hash Joins", in Proceedings of the 18th VLDB Conference, Auguat 1992,
Vancouver, B.C., Canada.

[CHOU86] Hong-Tal Chou and David J. DeWitt, "An Evaluation of Buffer Management Strategies

for Relational Database Systems", in Proceedings of 12 th International Conference on Very Large Data
Bases, 1986.

[CROM89] R.F. Cromp, Sharon Crook, "An Intelligent User Interface for Browsing Satellite Data",

in Proceedings of 1989 Goddard Conference on Space Applications of AI, Greenbelt, MD.

[CROM92] Robert F. Cromp, "An Intelligent Information Fusion System for Handing the Archiving

and Querying ofTerabyte-sized Sp'atial Databases", in Proceedings of International Space Year Conference
on Earth and Space Science Information Systems, 1992, Pasadena, CA.

[DeWI84] D.J. DeWitt, et al, "Implementation Techniques for Main memory Database Systems", in

Proceedings of ACM SIGMOD Conference, Boeton, MA, June 1984.

[DeWIg0] D.J. DeWitt, et al, "The Gamma Database Machine Project", in IEEE 2_ansactions on

Knowledge and Data Engineering, Vol 2, No 1, March 1990.

[DeWI92a] D. J. DeWitt and J. Gray, "Parallel Database Systems: The Future of High Performance

Systems," in Communications of the ACM, Vol. 35, No. 6, June 1992.

[DeWI92b] D. J. DeWier, J. F. Nanghton, D. A. Schneider, and S. Seshadri, "Practical Skew Handling

in Parallel Joins", in Proceedings of the 18th VLDB Conference, August 1992, Vancouver, B.C., Canada.

[ABDE93] K.A.S. Abdel-Ghalfar, A. EI-Abbadi, "Optimal Disk Allocation for Partial Match Queries",

in ACM Transactions on Database Systems, Vol 18, No 1, March 1993.

[FALO93] C. Faloutsos, P. Bhagwat, "Declustering Using Fractals', in Proceedings of $nd Interna-

tional Conference on PDIS, San Diego, CA, January 1993.

[FRIE90] O. Frieder, "Multiprocessor Algorithms for Relational Database Operations on Hypercube
Systems", in IEEE Computer, Vol 19, No 4, December 1990.

[GANG92] S. Ganguly, W. Hasan, R. Krishnamurthy, "Query O _timization for Parallel Execution",

in Proceedings of ACM SIGMOD Conference, San Diego, CA June 1992.

483

[GHAN91] S. Ghandeharizadeh, L. Ramos, Z. Asad, and W. Qureshi, "Object placement in Parallel

Hypermedia Systems", in Proceedings of the 17 th International Conference on Very Large Daga Bases,

Barcelona, Spain, 1991.

[GHAN92] S. Ghandeharizadeh, David J. DeWitt, and Waheed Qureshi, "A Performance Analysis of
Alternative Multi-Attribute Declustering Strategies", in Proceedings of ACM S[GMOD Conference, San

Diego, CA June 1992.

[GORD91] David Gordon, etc., "Disk Arrays: Are They of Use for Database Processing?" Panel in

Proceedings of First International Conference on Parallel and Distributed Information Systems, Dec. 1991,

Miami Beach, Florida, pp. 117-118.

[GUST89] J.L. Gustafson, "Challenges to Parallel Processing", talk given at University of Minnesota,
Minneapolis, September 1989.

[HONG91] Wei Hong and M. Stonebraker, "Optimization of Parallel Query Execution Plans for
XPRS", 1" International Conference on Parallel and Distributed Information Systems, Miami, Florida,
1991.

[HONG92] Wei Hong, "Exploiting Inter-Operation Parallelismin XPRS", in Proceedings of ACM

SIGMOD Conference,San Diego,CA June 1992.

[HUA91] K. A. Hua and C. Lee, "Handling Data Skew in Multiprocessor Database Computers Us-

ing Partition Tuning", in Proceedings of the 17 th International Conference on Vertl Large Data Bases,

Barcelona, Spain, 1991.

[HUA93] K.A. Hue, Y. Lo, and H.C. Young, "Including the Left Balancing Issue in the Optimization of
Multi-Way Join Querys for Shared-Nothing Database Computers", in Proceedings of the _nd International

Conference on Parallel and Distributed Information Systems, January 1993, San Diego, CA.

[IOAN90] Y. E. Ioannidis, and Y. Kang, "Randomized Algorithms for Optimizing Large Join Queries,"

in Proceedings of Intl. Conf. on the MgmL of Data, Atlantic City, NJ, May 1990.

[KOLO89] C. Kolovson and M. Stonebraker, "Indexing Techniques for Historical Databues', in Pro-
ccedings of the 5 th International Conference on Data Engineering, Los Angeles, LA, 1989.

[LEWI92] Ted G. Lewis, and Hesham EI-Rewini, "Introduction to Parallel Computing", Prentice Hall,

Englewood Cliffs, New Jersey, 1992, ISBN 0-13-498924-4.

[LI92] Jianzhong Li, Jaideep Srivastava, and Doron Rotem, "CMD: A Multidimensional Dechmtering

Method for Parallel Databases Systems", in Proceedings of the IBth VLDB Conference, August 1992,

Vancouver, B.C., Canada.

[McKE92] Edwin L. McKenzie Jr. and Richard T. Snodgrass, "Evaluation of Relational Algebras

incorporating the Time Dimension in Databases", in ACM Competing Surveys, Vol. 24 No. 4, December
1991.

[MERC93] A. Merchant and P.S.Yu, "Issuesinthe Design ofMulti-ServerFileSystems to Cope with

Load Skew", in Proceedings of the £nd International Conference on Parallel and Distributed Information

SYstems, January 1993, San Diego, CA.

[NICC92] Thomas Niccum, Jaideep Srivastava, and Jianzhong Li, "DA-Joins : DeClustering Aware

Parallel Join Algorithms," Computer Science Dept. Univ' Of Minnesota, TR92-71.

[NICC93] Thomas Niccum, Jaldeep Srivastava, Bhaskar Himatsingka and Jianzhong Li, "A Tree

Decomposition Approach to the Parallel Execution of Relational Query Plans", AHPCRC Univ. of
Minnesota, TR93-019.

[PATT88] David A. Patterson, Garth Gibson, and Randy H. Katz, "A Case for Redundant Arrays

of Inexpensive Disks (RAID)', in Proceedings of ACM International Conference on Management of Data
(SIGMOD), June 1988, pp. !09-!16.

[PRAT93] Terrence W. Pratt, "CESDIS Proposal Guidelines", February, 1993. k

[RO EL9 I] Larry FI. Roelofs, and William J. Campbell, "Applying Semantic Data Modeling Techniques

to Large Mass Storage System 'Designs", Presented at the Tenth IEEE Symposium on Mass Storage
Systems, 1991. _ _ _ _ _

[SCHN89] D.A. Schneider,D.J.DeWitt, "A Performance Evaluation ofFour ParallelJoin Algorithms

in a Shared-Nothing Multiprocessor",in Proceedingsof ACM SIGMOD Conference,Portland, OR, June

484

1989.
[SCHN90]D.A.SchneiderandD. J. DeWitt, "Trade-offs in Processing Complex Queries via Hashing

in Multiprocessor Database Machines", in Proceedings of 10 th VLDB Conference, Brisbane, Australia,
1990.

[SELI79] P. P. Selinger, et al, "Access Path Selection in a Relational Database Management System",
in Proceedings of ACM SIGMOD International Conf. on Mgmt. of Data, 1979.

[SRIV89] J. Srivastava, J.S.E. Tan, V.¥. Lum, "TBSAM: A Tree-Based Access Method for Processing

Aggregate Queries", in IEEE Transactions on Knowledge and Data Engineering, Vol 1, No 4, December
1989.

[SRIV93] Jaldeep Srivastava, and Gary Elsesser, "Optimizing Multi-Join Queries for Shared-Memory

Multiprocessor", in Proceedings of the _nd International Conference on Parallel and Distribwfed Infor-

mation SYstems, January 1993, San Diego, CA.

[STON88] M. R. Stonebraker, "The Case for Shared Nothing," in Database Enfineerinf, Vol. 9, No.
1, 1986.

[STON88] M.R. Stonebraker, et al, "The Design of XPRS", in Proceedings of l_th VLDB Conference,
Los Angeles, CA, August 1988.

[SWAM88] A. Swami, and A. Gupta, "Optimization of Large Join Queries," in Proceedings of ACM

SIGMOD Intl . Conf. on Mgmt. of Data, Chicago, IL, June 1988.

[SWAM89] A. Swami, "Optimization of Large Join Queries: Combining Heuristics and Combinatorial
Techniques," in Proceedings of Intl. Conf. on Mgmt. of Data, Portland, OR, June 1989.

[SU86] S.¥.W. Su, "Database Computers: Principles, Architecture and TechniqueS, New York:
McGraw-Hill, 1986.

[TDMSg0] "Third Generation Database Manifesto," In ACM SIGMOD Record, Vol. 19, No. 3,
September 1990.

[TMCgl] "Data Vault", talk giren by TMC, 1991.

[WILS91] A.L. Wilschut and P.M.G. Apers, "Dataflow Query Execution in a Parallel Main-Memory

Environment", in 1 't International Conference on Parallel and Distributed Information Systems, 1991,
Miami, Florida.

[WOLFgl] J.L. Wolf, D.M. Dias, P.S. Yu, and J. Turek, "Comparative Performance of Parallel Join

Algorithms" ,in 1'* International Conference on Parallel and Distributed Information Systems, 1991, Mi-
ami, Florida.

[YU93] P. S. Yu and Douglas W. Cornell, "Buffer Management Based on Return on Consumption in

a Multi-Query Environment", in VLDB Journal, Vo]. 2, No. 1, January, 1993.

485

